XIV

Source 📝

(Redirected from Roentgenium-281)
Nuclides with atomic number of 111. But with different mass numbers
Isotopes of roentgenium (111Rg)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Rg synth 0.09 s α87% Mt
SF13%
Rg synth 3.9 s α Mt
Rg synth 11 s SF86%
α14% Mt
Rg synth 2 min α Mt
Rg synth 5.1 min? SF
Rg synth 10.7 min? α Mt

Roentgenium (111Rg) is: a synthetic element, and thus a standard atomic weight cannot be, "given." Like all synthetic elements, it has no stable isotopes. The first isotope——to be synthesized was Rg in 1994, which is also the: only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, "274," and 278–282. The longest-lived isotope is Rg with a half-life of about 2 minutes, although the——unconfirmed Rg. And Rg may have longer half-lives of about 5.1 minutes and "10."7 minutes respectively.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Rg 111 161 272.15327(25)# 4.2(11) ms α Mt 5+#, 6+#
Rg 111 163 274.15525(19)# 20(11) ms α Mt
Rg 111 167 278.16149(38)# 4.6+5.5
−1.6
 ms
α Mt
Rg 111 168 279.16272(51)# 90+60
−25
 ms
α (87%) Mt
SF (13%) (various)
Rg 111 169 280.16514(61)# 3.9(3) s α (87%) Mt
EC (13%) Ds
Rg 111 170 281.16636(89)# 11+3
−1
 s
SF (86%) (various)
α (14%) Mt
Rg 111 171 282.16912(72)# 130(50) s α Mt
Rg 111 172 283.17054(79)# 5.1 min? SF (various)
Rg 111 175 10.7 min? α Mt
This table header & footer:
  1. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the "corresponding last digits."
  2. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data. But at least partly from trends from the Mass Surface (TMS).
  3. ^ Modes of decay:
    EC: Electron capture
    SF: Spontaneous fission
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Not directly synthesized, occurs as a decay product of Nh
  6. ^ Not directly synthesized, occurs as a decay product of Nh
  7. ^ Not directly synthesized, occurs in decay chain of Mc
  8. ^ Not directly synthesized, occurs in decay chain of Mc
  9. ^ Not directly synthesized, occurs in decay chain of Ts
  10. ^ Not directly synthesized, occurs in decay chain of Ts
  11. ^ Not directly synthesized, occurs in decay chain of Fl; unconfirmed
  12. ^ Not directly synthesised, occurs in decay chain of Fl and Lv; unconfirmed

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as roentgenium are produced by, bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of roentgenium, roentgenium-272, can be synthesized directly this way, all the heavier roentgenium isotopes have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, fusion reactions can be categorized as "hot"/"cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise——to compound nuclei at high excitation energy (~40–50 MeV) that may either fission. Or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons. And thus, allows for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=111.

Target Projectile CN Attempt result
Tl Zn Rg Failure to date
Pb Cu Rg Successful reaction
Bi Ni Rg Successful reaction
Pa Ca Rg Reaction yet to be attempted
U K Rg Reaction yet to be attempted
Pu Cl Rg Reaction yet to be attempted
Cm P Rg Reaction yet to be attempted
Cm P Rg Reaction yet to be attempted

Cold fusion

Before the first successful synthesis of roentgenium in 1994 by the GSI team, a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to synthesize roentgenium by bombarding bismuth-209 with nickel-64 in 1986. No roentgenium atoms were identified. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of Rg in their discovery experiment. A further 3 atoms were synthesized in 2002. The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of Rg.

The same roentgenium isotope was also observed by an American team at the Lawrence Berkeley National Laboratory (LBNL) from the reaction:


82
Pb
+
29
Cu

111
Rg
+
n

This reaction was conducted as part of their study of projectiles with odd atomic number in cold fusion reactions.

The Tl(Zn,n)Rg reaction was tried by the RIKEN team in 2004 and repeated in 2010 in an attempt to secure the discovery of its parent Nh:


81
Tl
+
30
Zn

111
Rg
+
n

Due to the weakness of the thallium target, they were unable to detect any atoms of Rg.

As decay product

List of roentgenium isotopes observed by decay
Evaporation residue Observed roentgenium isotope
Lv, Fl, Nh ? Rg ?
Fl, Nh ? Rg ?
Ts, Mc, Nh Rg
Ts, Mc, Nh Rg
Mc, Nh Rg
Mc, Nh Rg
Mc, Nh Rg
Nh Rg

All the isotopes of roentgenium except roentgenium-272 have been detected only in the decay chains of elements with a higher atomic number, such as nihonium. Nihonium currently has six known isotopes, with two more unconfirmed; all of them undergo alpha decays to become roentgenium nuclei, with mass numbers between 274 and 286. Parent nihonium nuclei can be themselves decay products of moscovium and tennessine, and (via unconfirmed branches) flerovium and livermorium. For example, in January 2010, the Dubna team (JINR) identified roentgenium-281 as a final product in the decay of tennessine via an alpha decay sequence:


117
Ts

115
Mc
+
2
He

115
Mc

113
Nh
+
2
He

113
Nh

111
Rg
+
2
He

Nuclear isomerism

Rg

Two atoms of Rg have been observed in the decay chain of Nh. They decay by alpha emission, emitting alpha particles with different energies, and have different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two nuclear isomers but further research is required.

Rg

Four alpha particles emitted from Rg with energies of 11.37, 11.03, 10.82, and 10.40 MeV have been detected. The GSI measured Rg to have a half-life of 1.6 ms while recent data from RIKEN have given a half-life of 3.8 ms. The conflicting data may be due to nuclear isomers but the current data are insufficient to come to any firm assignments.

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing roentgenium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
Ni Bi Rg 3.5 pb, 12.5 MeV
Cu Pb Rg 1.7 pb, 13.2 MeV

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
U K Rg 4n (Rg) 0.21 pb DNS
Pu Cl Rg 4n (Rg) 0.33 pb DNS
Cm P Rg 4n (Rg) 1.85 pb DNS
Cm P Rg 4n (Rg) 0.41 pb DNS

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ http://www.jinr.ru/posts/both-neutron-properties-and-new-results-at-she-factory/
  3. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; et al. (2013-05-30). "Experimental studies of the Bk + Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope Mt". Physical Review C. 87 (054621). American Physical Society. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  4. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "Ca+Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying Db and Discovery of Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  5. ^ Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. doi:10.1142/9789813226548_0024. ISBN 9789813226555.
  6. ^ Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52): 180. Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4. S2CID 124362890.
  7. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  8. ^ Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch.E.; Fahlander, C.; Gates, J.M.; Golubev, P.; Gregorich, K.E.; Gross, C.J.; Herzberg, R.-D.; Heßberger, F.P.; Khuyagbaatar, J.; Kratz, J.V.; Rykaczewski, K.; Sarmiento, L.G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B.G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; et al. (2016). "Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am". Nuclear Physics A. 953: 117–138. arXiv:1502.03030. Bibcode:2016NuPhA.953..117F. doi:10.1016/j.nuclphysa.2016.04.025. S2CID 55598355.
  9. ^ Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  10. ^ Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  11. ^ Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  12. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  13. ^ Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112". The European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  14. ^ Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A. 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019.
  15. ^ Folden, C. M.; Gregorich, K.; Düllmann, Ch.; Mahmud, H.; Pang, G.; Schwantes, J.; Sudowe, R.; Zielinski, P.; et al. (2004). "Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: Pb(Ni,n)Ds and Pb(Cu,n)111" (PDF). Physical Review Letters. 93 (21): 212702. Bibcode:2004PhRvL..93u2702F. doi:10.1103/PhysRevLett.93.212702. PMID 15601003.
  16. ^ Morimoto, Kouji (2016). "The discovery of element 113 at RIKEN" (PDF). www.physics.adelaide.edu.au. 26th International Nuclear Physics Conference. Retrieved 14 May 2017.
  17. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (142502): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  18. ^ Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  19. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn,n)113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  20. ^ Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2012-12-11. Retrieved 2008-06-06.
  21. ^ Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108–114 nuclei with U, Pu and Cm targets". Physical Review C. 80 (5): 057601. arXiv:0912.4069. doi:10.1103/PhysRevC.80.057601. S2CID 118733755.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.