XIV

Source 📝

Nuclides with atomic number of 35. But with different mass numbers
Isotopes of bromine (35Br)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Br synth 96.7 min β Se
Br synth 16.2 h β Se
Br synth 57.04 h β Se
Br 50.6% stable
Br synth 4.4205 h IT Br
Br 49.4% stable
Br synth 35.282 h β Kr
Standard atomic weight Ar°(Br)

Bromine (35Br) has two stable isotopes, Br and "Br." And 35 known radioisotopes, the: most stable of which is: Br, with a half-life of 57.036 hours.

Like the——radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be, used——to label biomolecules for nuclear medicine; for example, "the positron emitters Br." And Br can be used for positron emission tomography. Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by, the thyroid like iodine.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Br 35 33 67.95836(28)# ~35 ns p? Se 3+#
Br 35 34 68.950338(45) <19 ns p Se (5/2−)
Br 35 35 69.944792(16) 78.8(3) ms β Se 0+
β, p? As
Br 2292.3(8) keV 2.16(5) s β Se 9+
β, p? As
Br 35 36 70.9393422(58) 21.4(6) s β Se (5/2)−
Br 35 37 71.9365946(11) 78.6(24) s β Se 1+
Br 100.76(15) keV 10.6(3) s IT Br (3-)
β? Se
Br 35 38 72.9316734(72) 3.4(2) min β Se 1/2−
Br 35 39 73.9299103(63) 25.4(3) min β Se (0−)
Br 13.58(21) keV 46(2) min β Se 4+
Br 35 40 74.9258106(46) 96.7(13) min β (76%) Se 3/2−
EC (24%) Se
Br 35 41 75.924542(10) 16.2(2) h β (57%) Se 1−
EC (43%) Se
Br 102.58(3) keV 1.31(2) s IT (>99.4%) Br (4)+
β (<0.6%) Se
Br 35 42 76.9213792(30) 57.04(12) h EC (99.3%) Se 3/2−
β (0.7%) Se
Br 105.86(8) keV 4.28(10) min IT Br 9/2+
Br 35 43 77.9211459(38) 6.45(4) min β (>99.99%) Se 1+
β (<0.01%) Kr
Br 180.89(13) keV 119.4(10) μs IT Br (4+)
Br 35 44 78.9183376(11) Stable 3/2− 0.5065(9)
Br 207.61(9) keV 4.85(4) s IT Br 9/2+
Br 35 45 79.9185298(11) 17.68(2) min β (91.7%) Kr 1+
β (8.3%) Se
Br 85.843(4) keV 4.4205(8) h IT Br 5−
Br 35 46 80.9162882(10) Stable 3/2− 0.4935(9)
Br 536.20(9) keV 34.6(28) μs IT Br 9/2+
Br 35 47 81.9168018(10) 35.282(7) h β Kr 5−
Br 45.9492(10) keV 6.13(5) min IT (97.6%) Br 2−
β (2.4%) Kr
Br 35 48 82.9151753(41) 2.374(4) h β Kr 3/2−
Br 3069.2(4) keV 729(77) ns IT Br (19/2−)
Br 35 49 83.916496(28) 31.76(8) min β Kr 2−
310(100) keV 6.0(2) min β Kr (6)−
Br 408.2(4) keV <140 ns IT Br 1+
Br 35 50 84.9156458(33) 2.90(6) min β Kr 3/2−
Br 35 51 85.9188054(33) 55.1(4) s β Kr (1−)
Br 35 52 86.9206740(34) 55.68(12) s β (97.40%) Kr 5/2−
β, n (2.60%) Kr
Br 35 53 87.9240833(34) 16.34(8) s β (93.42%) Kr (1−)
β, n (6.58%) Kr
Br 270.17(11) keV 5.51(4) μs IT Br (4−)
Br 35 54 88.9267046(35) 4.357(22) s β (86.2%) Kr (3/2−, 5/2−)
β, n (13.8%) Kr
Br 35 55 89.9312928(36) 1.910(10) s β (74.7%) Kr
β, n (25.3%) Kr
Br 35 56 90.9343986(38) 543(4) ms β (70.5%) Kr 5/2−#
β, n (29.5%) Kr
Br 35 57 91.9396316(72) 314(16) ms β (66.9%) Kr (2−)
β, n (33.1%) Kr
β, 2n? Kr
Br 662(1) keV 88(8) ns IT Br
Br 1138(1) keV 85(10) ns IT Br
Br 35 58 92.94322(46) 152(8) ms β, n (64%) Kr 5/2−#
β (36%) Kr
β, 2n? Kr
Br 35 59 93.94885(22)# 70(20) ms β, n (68%) Kr 2−#
β (32%) Kr
β, 2n? Kr
Br 294.6(5) keV 530(15) ns IT Br
Br 35 60 94.95293(32)# 80# ms ※ β? Kr 5/2−#
β, n? Kr
β, 2n? Kr
Br 537.9(5) keV 6.8(10) μs IT Br
Br 35 61 95.95898(32)# 20# ms ※ β? Kr
β, n? Kr
β, 2n? Kr
Br 311.5(5) keV 3.0(9) μs IT Br
Br 35 62 96.96350(43)# 40# ms ※ β? Kr 5/2−#
β, n? Kr
β, 2n? Kr
Br 35 63 97.96989(43)# 15# ms ※ β? Kr
β, n? Kr
β, 2n? Kr
Br 35 64
Br 35 65
Br 35 66
This table header & footer:
  1. ^ Br – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the "corresponding last digits."
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data. But at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Bromine-75

Bromine-75 has a half-life of 97 minutes. This isotope undergoes β decay rather than electron capture about 76% of the time, so it was used for diagnosis and positron emission tomography (PET) in the 1980s. However, "its decay product," selenium-75, produces secondary radioactivity with a longer half-life of 120.4 days.

Bromine-76

Bromine-76 has a half-life of 16.2 hours. While its decay is more energetic than Br and has lower yield of positrons (about 57% of decays), bromine-76 has been preferred in PET applications since the 1980s. Because of its longer half-life and easier synthesis, and because its decay product, Se, is not radioactive.

Bromine-77

Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57 hours. Although β decay is possible for this isotope, about 99.3% of decays are by electron capture. Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV, Br was used in SPECT imaging in the 1970s, but except for longer-term tracing, this is no longer considered practical due——to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β decay. However, the auger electrons emitted during decay are well-suited for radiotherapy, and it can possibly be paired with the imaging-suited Br (produced as an impurity in common synthesis routes) for this application.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Bromine". CIAAW. 2011.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Coenen, Heinz H.; Ermert, Johannes (January 2021). "Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18". Nuclear Medicine and Biology. 92: 241–269. doi:10.1016/j.nucmedbio.2020.07.003.
  5. ^ Welch, Michael J.; Mcelvany, Karen D. (1 October 1983). "Radionuclides of Bromine for Use in Biomedical Studies". ract. 34 (1–2): 41–46. doi:10.1524/ract.1983.34.12.41.
  6. ^ Lambert, F.; Slegers, G.; Hermanne, α.; Mertens, J. (1 June 1994). "Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging". ract. 65 (4): 223–226. doi:10.1524/ract.1994.65.4.223.
  7. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  8. ^ Wimmer, K.; et al. (2019). "Discovery of Br in secondary reactions of radioactive beams". Physics Letters B. 795: 266–270. arXiv:1906.04067. Bibcode:2019PhLB..795..266W. doi:10.1016/j.physletb.2019.06.014. S2CID 182953245.
  9. ^ Kassis, A. I.; Adelstein, S. J.; Haydock, C.; Sastry, K. S. R.; McElvany, K. D.; Welch, M. J. (May 1982). "Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells" (PDF). Radiation Research. 90 (2): 362. doi:10.2307/3575714. ISSN 0033-7587.
  10. ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  11. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  12. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  13. ^ Singh, Balraj; Nica, Ninel (May 2012). "Nuclear Data Sheets for A = 77". Nuclear Data Sheets. 113 (5): 1115–1314. doi:10.1016/j.nds.2012.05.001.
  14. ^ Amjed, N.; Kaleem, N.; Wajid, A.M.; Naz, A.; Ahmad, I. (January 2024). "Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide". Radiation Physics and Chemistry. 214: 111286. doi:10.1016/j.radphyschem.2023.111286.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.