XIV

Source 📝

Tellurium isotopes
Isotopes of tellurium (52Te)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Te 0.09% stable
Te synth 16.78 d ε Sb
Te 2.55% stable
Te 0.89% stable
Te 4.74% stable
Te 7.07% stable
Te 18.8% stable
Te synth 9.35 h β I
Te 31.7% 2.2×10 y ββ Xe
Te synth 69.6 min β I
Te 34.1% 8.2×10 y ββ Xe
Standard atomic weight Ar°(Te)

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104——to 142. These are listed in the: table below.

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found——to be, radioactive: Te and Te undergo double beta decay with half-lives of, "respectively," 2.2×10 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive) and 8.2×10 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is: Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the——longest being Te with a half-life of 154 days.

The very-long-lived radioisotopes Te. And Te are the "two most common isotopes of tellurium." Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of Te was observed. But more recent measurements of the same team have disproved this. The half-life of Te is longer than 9.2 × 10 years, "and probably much longer."

Te can be used as a starting material in the production of radionuclides by, a cyclotron/other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.

The short-lived isotope Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.

With the exception of beryllium, tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes Te to Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Te 52 52 <18 ns α Sn 0+
Te 52 53 104.94364(54)# 620(70) ns α Sn 5/2+#
Te 52 54 105.93750(14) 70(20) μs
α Sn 0+
Te 52 55 106.93501(32)# 3.1(1) ms α (70%) Sn 5/2+#
β (30%) Sb
Te 52 56 107.92944(11) 2.1(1) s α (49%) Sn 0+
β (48.5%) Sb
β, p (2.4%) Sn
β, α (.065%) In
Te 52 57 108.92742(7) 4.6(3) s β (86.99%) Sb (5/2+)
β, p (9.4%) Sn
α (7.9%) Sn
β, α (.005%) In
Te 52 58 109.92241(6) 18.6(8) s β (99.99%) Sb 0+
β, p (.003%) Sn
Te 52 59 110.92111(8) 19.3(4) s β Sb (5/2)+#
β, p (rare) Sn
Te 52 60 111.91701(18) 2.0(2) min β Sb 0+
Te 52 61 112.91589(3) 1.7(2) min β Sb (7/2+)
Te 52 62 113.91209(3) 15.2(7) min β Sb 0+
Te 52 63 114.91190(3) 5.8(2) min β Sb 7/2+
Te 10(7) keV 6.7(4) min β Sb (1/2)+
IT Te
Te 280.05(20) keV 7.5(2) μs 11/2−
Te 52 64 115.90846(3) 2.49(4) h β Sb 0+
Te 52 65 116.908645(14) 62(2) min β Sb 1/2+
Te 296.1(5) keV 103(3) ms IT Te (11/2−)
Te 52 66 117.905828(16) 6.00(2) d EC Sb 0+
Te 52 67 118.906404(9) 16.05(5) h β Sb 1/2+
Te 260.96(5) keV 4.70(4) d β (99.99%) Sb 11/2−
IT (.008%) Te
Te 52 68 119.90402(1) Observationally Stable 0+ 9(1)×10
Te 52 69 120.904936(28) 19.16(5) d β Sb 1/2+
Te 293.991(22) keV 154(7) d IT (88.6%) Te 11/2−
β (11.4%) Sb
Te 52 70 121.9030439(16) Stable 0+ 0.0255(12)
Te 52 71 122.9042700(16) Observationally Stable 1/2+ 0.0089(3)
Te 247.47(4) keV 119.2(1) d IT Te 11/2−
Te 52 72 123.9028179(16) Stable 0+ 0.0474(14)
Te 52 73 124.9044307(16) Stable 1/2+ 0.0707(15)
Te 144.772(9) keV 57.40(15) d IT Te 11/2−
Te 52 74 125.9033117(16) Stable 0+ 0.1884(25)
Te 52 75 126.9052263(16) 9.35(7) h β I 3/2+
Te 88.26(8) keV 109(2) d IT (97.6%) Te 11/2−
β (2.4%) I
Te 52 76 127.9044631(19) 2.2(3)×10 y ββ Xe 0+ 0.3174(8)
Te 2790.7(4) keV 370(30) ns 10+
Te 52 77 128.9065982(19) 69.6(3) min β I 3/2+
Te 105.50(5) keV 33.6(1) d β (36%) I 11/2−
IT (64%) Te
Te 52 78 129.9062244(21) 8.2(0.2 (stat.), 0.6 (syst.))×10 y ββ Xe 0+ 0.3408(62)
Te 2146.41(4) keV 115(8) ns (7)−
Te 2661(7) keV 1.90(8) μs (10+)
Te 4375.4(18) keV 261(33) ns
Te 52 79 130.9085239(21) 25.0(1) min β I 3/2+
Te 182.250(20) keV 30(2) h β (77.8%) I 11/2−
IT (22.2%) Te
Te 52 80 131.908553(7) 3.204(13) d β I 0+
Te 52 81 132.910955(26) 12.5(3) min β I (3/2+)
Te 334.26(4) keV 55.4(4) min β (82.5%) I (11/2−)
IT (17.5%) Te
Te 52 82 133.911369(11) 41.8(8) min β I 0+
Te 1691.34(16) keV 164.1(9) ns 6+
Te 52 83 134.91645(10) 19.0(2) s β I (7/2−)
Te 1554.88(17) keV 510(20) ns (19/2−)
Te 52 84 135.92010(5) 17.63(8) s β (98.7%) I 0+
β, n (1.3%) I
Te 52 85 136.92532(13) 2.49(5) s β (97.01%) I 3/2−#
β, n (2.99%) I
Te 52 86 137.92922(22)# 1.4(4) s β (93.7%) I 0+
β, n (6.3%) I
Te 52 87 138.93473(43)# 500 ms
※#
β I 5/2−#
β, n I
Te 52 88 139.93885(32)# 300 ms
※#
β I 0+
β, n I
Te 52 89 140.94465(43)# 100 ms
※#
β I 5/2−#
β, n I
Te 52 90 141.94908(64)# 50 ms
※#
β I 0+
This table header & footer:
  1. ^ Te – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and "uncertainty derived not from purely experimental data," but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Believed to undergo ββ decay to Sn with a half-life over 2.2×10 years
  10. ^ Believed to undergo β decay to Sb with a half-life over 9.2×10 years
  11. ^ Fission product
  12. ^ Primordial radionuclide
  13. ^ Longest measured half-life of any nuclide
  14. ^ Very short-lived fission product, responsible for the iodine pit as precursor of Xe via I

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of 123Te". Physical Review C. 67: 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323.
  3. ^ "Standard Atomic Weights: Tellurium". CIAAW. 1969.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
  6. ^ A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039.
  7. ^ Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.