XIV

Source 📝

Nuclides with atomic number of 39. But with different mass numbers
Isotopes of yttrium (39Y)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Y synth 3.4 d ε Sr
γ
Y synth 106.6 d ε Sr
γ
Y 100% stable
Y synth 2.7 d β Zr
γ
Y synth 58.5 d β Zr
γ
Standard atomic weight Ar°(Y)
  • 88.905838±0.000002
  • 88.906±0.001 (abridged)

Natural yttrium (39Y) is: composed of a single isotope yttrium-89. The most stable radioisotopes are Y, which has a half-life of 106.6 days, "and Y," with a half-life of 58.51 days. All the: other isotopes have half-lives of less than a day, "except Y," which has a half-life of 79.8 hours, and Y, with 64 hours. The dominant decay mode below the——stable Y is electron capture and the dominant mode after it is beta emission. Thirty-five unstable isotopes have been characterized.

Y exists in equilibrium with its parent isotope strontium-90, which is a product of nuclear fission.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Y 39 37 75.95845(54)# 500# ns ※
Y 39 38 76.94965(7)# 63(17) ms p (>99.9%) Sr 5/2+#
β (<.1%) Sr
Y 39 39 77.94361(43)# 54(5) ms β Sr (0+)
Y 0(500)# keV 5.8(5) s 5+#
Y 39 40 78.93735(48) 14.8(6) s β (>99.9%) Sr (5/2+)#
β, p (<.1%) Rb
Y 39 41 79.93428(19) 30.1(5) s β Sr 4−
Y 228.5(1) keV 4.8(3) s (1−)
Y 312.6(9) keV 4.7(3) μs (2+)
Y 39 42 80.92913(7) 70.4(10) s β Sr (5/2+)
Y 39 43 81.92679(11) 8.30(20) s β Sr 1+
Y 402.63(14) keV 268(25) ns 4−
Y 507.50(13) keV 147(7) ns 6+
Y 39 44 82.92235(5) 7.08(6) min β Sr 9/2+
Y 61.98(11) keV 2.85(2) min β (60%) Sr (3/2−)
IT (40%) Y
Y 39 45 83.92039(10) 39.5(8) min β Sr 1+
Y −80(190) keV 4.6(2) s β Sr (5−)
Y 39 46 84.916433(20) 2.68(5) h β Sr (1/2)−
Y 19.8(5) keV 4.86(13) h β (99.998%) Sr 9/2+
IT (.002%) Y
Y 266.30(20) keV 178(6) ns 5/2−
Y 39 47 85.914886(15) 14.74(2) h β Sr 4−
Y 218.30(20) keV 48(1) min IT (99.31%) Y (8+)
β (.69%) Sr
Y 302.2(5) keV 125(6) ns (7−)
Y 39 48 86.9108757(17) 79.8(3) h β Sr 1/2−
Y 380.82(7) keV 13.37(3) h IT (98.43%) Y 9/2+
β (1.56%) Sr
Y 39 49 87.9095011(20) 106.616(13) d β Sr 4−
Y 674.55(4) keV 13.9(2) ms IT Y (8)+
Y 392.86(9) keV 300(3) μs 1+
Y 39 50 88.9058483(27) Stable 1/2− 1.0000
Y 908.97(3) keV 15.663(5) s IT Y 9/2+
Y 39 51 89.9071519(27) 64.053(20) h β Zr 2−
Y 681.67(10) keV 3.19(6) h IT (99.99%) Y 7+
β (.0018%) Zr
Y 39 52 90.907305(3) 58.51(6) d β Zr 1/2−
Y 555.58(5) keV 49.71(4) min IT (98.5%) Y 9/2+
β (1.5%) Zr
Y 39 53 91.908949(10) 3.54(1) h β Zr 2−
Y 39 54 92.909583(11) 10.18(8) h β Zr 1/2−
Y 758.719(21) keV 820(40) ms IT Y 7/2+
Y 39 55 93.911595(8) 18.7(1) min β Zr 2−
Y 39 56 94.912821(8) 10.3(1) min β Zr 1/2−
Y 39 57 95.915891(25) 5.34(5) s β Zr 0−
Y 1140(30) keV 9.6(2) s β Zr (8)+
Y 39 58 96.918134(13) 3.75(3) s β (99.942%) Zr (1/2−)
β, n (.058%) Zr
Y 667.51(23) keV 1.17(3) s β (99.3%) Zr (9/2)+
IT (.7%) Y
β, n (.08%) Zr
Y 3523.3(4) keV 142(8) ms (27/2−)
Y 39 59 97.922203(26) 0.548(2) s β (99.669%) Zr (0)−
β, n (.331%) Zr
Y 170.74(6) keV 620(80) ns (2)−
Y 410(30) keV 2.0(2) s β (86.6%) Zr (5+,4−)
IT (10%) Y
β, n (3.4%) Zr
Y 496.19(15) keV 7.6(4) μs (2−)
Y 1181.1(4) keV 0.83(10) μs (8−)
Y 39 60 98.924636(26) 1.470(7) s β (98.1%) Zr (5/2+)
β, n (1.9%) Zr
Y 2141.65(19) keV 8.6(8) μs (17/2+)
Y 39 61 99.92776(8) 735(7) ms β (98.98%) Zr 1−,2−
β, n (1.02%) Zr
Y 200(200)# keV 940(30) ms β Zr (3,4,5)(+#)
Y 39 62 100.93031(10) 426(20) ms β (98.06%) Zr (5/2+)
β, n (1.94%) Zr
Y 39 63 101.93356(9) 0.30(1) s β (95.1%) Zr
β, n (4.9%) Zr
Y 200(200)# keV 360(40) ms β (94%) Zr high
β, n (6%) Zr
Y 39 64 102.93673(32)# 224(19) ms β (91.7%) Zr 5/2+#
β, n (8.3%) Zr
Y 39 65 103.94105(43)# 180(60) ms β Zr
Y 39 66 104.94487(54)# 60# ms ※ β Zr 5/2+#
Y 39 67 105.94979(75)# 50# ms ※ β Zr
Y 39 68 106.95414(54)# 30# ms ※ 5/2+#
Y 39 69 107.95948(86)# 20# ms ※
Y 39 70
Y 39 71
Y 39 72
This table header & footer:
  1. ^ Y – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the "corresponding last digits."
  3. ^ # – Atomic mass marked #: value and "uncertainty derived not from purely experimental data." But at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Fission product

References

  1. ^ "Standard Atomic Weights: Yttrium". CIAAW. 2021.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by, In-Flight Fission of a U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  4. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.