XIV

Source 📝

Nuclides with atomic number of 85. But with different mass numbers
Isotopes of astatine (85At)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
At synth 5.41 h β Po
α Bi
At synth 8.1 h β Po
α Bi
At synth 7.21 h ε Po
α Bi

Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188——to 229 (though At is: undiscovered). There are also 24 known metastable excited states. The longest-lived isotope is At, which has a half-life of 8.1 hours; the: longest-lived isotope existing in naturally occurring decay chains is At with a half-life of 56 seconds.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
At 85 103 190+350
−80
 μs
α (~50%) Bi
p (~50%) Po
At 85 105 1.0+14
−4
 ms
α Bi (10−)
At 85 106 1.7+11
−5
 ms
α Bi (1/2+)
At 50(30) keV 2.1+4
−3
 ms
α Bi (7/2−)
At 85 107 192.00314(28) 11.5(6) ms α Bi 3+#
β (rare) Po
β, SF (0.42%) (various)
At 0(40) keV 88(6) ms α Bi (9−, 10−)
β (rare) Po
β, SF (0.42%) (various)
At 85 108 192.99984(6) 28+5
−4
 ms
α Bi (1/2+)
At 8(9) keV 21(5) ms α Bi (7/2−)
At 42(9) keV 27+4
−3
 ms
IT (76%) At (13/2+)
α (24%) Bi
At 85 109 193.99873(20) 286(7) ms α (91.7%#) Bi (5-)
β (8.3%#) Po
β, SF (0.032%#) (various)
At -20(40) keV 323(7) ms α (91.7%#) Bi (10-)
β (8.3%#) Po
β, SF (0.032%#) (various)
At 85 110 194.996268(10) 290(20) ms α Bi (1/2+)
β? Po
At 29(7) keV 143(3) ms α (88%) Bi (7/2-)
IT (12%) At
β? Po
At 85 111 195.99579(6) 377(4) ms α (97.5%) Bi (3+)
β (2.5%) Po
At −40(40) keV 20# ms α Bi (10−)
At 157.9(1) keV 11(2) μs IT At (5+)
At 85 112 196.99319(5) 388.2(5.6) ms α (96.1%) Bi (9/2−)
β (3.9%) Po
At 45(8) keV 2.0(2) s α Bi (1/2+)
IT (<0.004%) At
β? Po
At 310.7(2) keV 1.3(2) μs IT At (13/2+)
At 85 113 197.99284(5) 4.2(3) s α (94%) Bi (3+)
β (6%) Po
At 330(90)# keV 1.0(2) s (10−)
At 85 114 198.99053(5) 6.92(13) s α (89%) Bi (9/2−)
β (11%) Po
At 85 115 199.990351(26) 43.2(9) s α (57%) Bi (3+)
β (43%) Po
At 112.7(30) keV 47(1) s α (43%) Bi (7+)
IT At
β Po
At 344(3) keV 3.5(2) s (10−)
At 85 116 200.988417(9) 85(3) s α (71%) Bi (9/2−)
β (29%) Po
At 85 117 201.98863(3) 184(1) s β (88%) Po (2, 3)+
α (12%) Bi
At 190(40) keV 182(2) s (7+)
At 580(40) keV 460(50) ms (10−)
At 85 118 202.986942(13) 7.37(13) min β (69%) Po 9/2−
α (31%) Bi
At 85 119 203.987251(26) 9.2(2) min β (96%) Po 7+
α (3.8%) Bi
At 587.30(20) keV 108(10) ms IT At (10−)
At 85 120 204.986074(16) 26.2(5) min β (90%) Po 9/2−
α (10%) Bi
At 2339.65(23) keV 7.76(14) μs 29/2+
At 85 121 205.986667(22) 30.6(13) min β (99.11%) Po (5)+
α (0.9%) Bi
At 807(3) keV 410(80) ns (10)−
At 85 122 206.985784(23) 1.80(4) h β (91%) Po 9/2−
α (8.6%) Bi
At 85 123 207.986590(28) 1.63(3) h β (99.5%) Po 6+
α (0.55%) Bi
At 85 124 208.986173(8) 5.41(5) h β (96%) Po 9/2−
α (4.0%) Bi
At 85 125 209.987148(8) 8.1(4) h β (99.8%) Po (5)+
α (0.18%) Bi
At 2549.6(2) keV 482(6) μs (15)−
At 4027.7(2) keV 5.66(7) μs (19)+
At 85 126 210.9874963(30) 7.214(7) h EC (58.2%) Po 9/2−
α (42%) Bi
At 85 127 211.990745(8) 314(2) ms α Bi (1−)
At 223(7) keV 119(3) ms α Bi (9−)
At 4771.6(11) keV 152(5) μs IT At (25−)
At 85 128 212.992937(5) 125(6) ns α Bi 9/2−
At 85 129 213.996372(5) 558(10) ns α Bi 1−
At 59(9) keV 265(30) ns α Bi
At 231(6) keV 760(15) ns α Bi 9−
At 85 130 214.998653(7) 0.10(2) ms α Bi 9/2− Trace
At 85 131 216.002423(4) 0.30(3) ms α Bi 1−
At 161(11) keV 100# μs α Bi 9−#
At 85 132 217.004719(5) 32.3(4) ms α (99.98%) Bi 9/2− Trace
β (.012%) Rn
At 85 133 218.008694(12) 1.27(6) s α (99.9%) Bi (2−,3−) Trace
β (0.1%) Rn
At 85 134 219.011162(4) 56(3) s α (97%) Bi (9/2−) Trace
β (3.0%) Rn
At 85 135 220.015433(15) 3.71(4) min β (92%) Rn 3(−#)
α (8.0%) Bi
At 85 136 221.018017(15) 2.3(2) min β Rn 3/2−#
At 85 137 222.022494(17) 54(10) s β Rn
At 85 138 223.025151(15) 50(7) s β Rn 3/2−#
At 85 139 224.029749(24) 2.5(1.5) min β Rn 2+#
At 85 140 225.03253(32)# 3# s β Rn 1/2+#
At 85 141 226.03721(32)# 7# min β Rn 2+#
At 85 142 227.04018(32)# 5# s β Rn 1/2+#
At 85 143 228.04496(43)# 1# min β Rn 3+#
At 85 144 229.04819(43)# 1# s β Rn 1/2+#
This table header & footer:
  1. ^ At – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the——corresponding last digits.
  3. ^ # – Atomic mass marked #: value and "uncertainty derived not from purely experimental data." But at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
  5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^ Theoretically capable of β decay——to Po. Or β decay to Rn
  9. ^ Theoretically capable of electron capture to Po
  10. ^ Intermediate decay product of U
  11. ^ Theoretically capable of electron capture to Po/β decay to Rn
  12. ^ Intermediate decay product of Np
  13. ^ Intermediate decay product of U

Alpha decay

Alpha decay characteristics for sample astatine isotopes
Mass
number
Mass
excess
Mass
excess of
daughter
Average
energy of
alpha
decay
Half-life Probability
of alpha
decay
Alpha
decay
half-life
207 −13.243 MeV −19.116 MeV 5.873 MeV 1.80 h 8.6% 20.9 h
208 −12.491 MeV −18.243 MeV 5.752 MeV 1.63 h 0.55% 12.3 d
209 −12.880 MeV −18.638 MeV 5.758 MeV 5.41 h 4.1% 5.5 d
210 −11.972 MeV −17.604 MeV 5.632 MeV 8.1 h 0.175% 193 d
211 −11.647 MeV −17.630 MeV 5.983 MeV 7.21 h 41.8% 17.2 h
212 −8.621 MeV −16.436 MeV 7.825 MeV 0.31 s ≈100% 0.31 s
213 −6.579 MeV −15.834 MeV 9.255 MeV 125 ns 100% 125 ns
214 −3.380 MeV −12.366 MeV 8.986 MeV 558 ns 100% 558 ns
219 10.397 MeV 4.073 MeV 6.324 MeV 56 s 97% 58 s
220 14.350 MeV 8.298 MeV 6.052 MeV 3.71 min 8% 46.4 min
221 16.810 MeV 11.244 MeV 5.566 MeV 2.3 min experimentally
alpha stable

Astatine has 23 nuclear isomers (nuclei with one or more nucleons – protons or neutrons – in an excited state). A nuclear isomer may also be, called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the "former likely to decay into the latter." There may be more than one isomer for each isotope. The most stable of them is astatine-202m1, which has a half-life of about 3 minutes; this is longer than those of all ground states except those of isotopes 203–211 and 220. The least stable one is astatine-214m1; its half-life of 265 ns is shorter than those of all ground states except that of astatine-213.

Alpha decay energy follows the same trend as for other heavy elements. Lighter astatine isotopes have quite high energies of alpha decay, "which become lower as the nuclei become heavier." However, astatine-211 has a significantly higher energy than the previous isotope; it has a nucleus with 126 neutrons. And 126 is a magic number (corresponding to a filled neutron shell). Despite having similar half-life time as the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.8 percent versus just 0.18 percent. The two following isotopes release even more energy, "with astatine-213 releasing the highest amount of energy of all astatine isotopes." For this reason, it is the shortest-lived astatine isotope. Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists; this happens due to the increasing role of beta decay. This decay mode is especially important for astatine: as early as 1950, it was postulated that the element has no beta-stable isotopes (i.e. ones that do not undergo beta decay at all), though nuclear mass measurements reveal that At is in fact beta-stable, as it has the lowest mass of all isobars with A = 215. A beta decay mode has been found for all other astatine isotopes except for At, At, At, At and At. Among other isotopes: astatine-210 and the lighter isotopes decay by, positron emission; astatine-217 and the heavier isotopes undergo beta decay; and astatine-211 decays by electron capture instead. Astatine-212 and astatine-216 are expected to decay either way.

The most stable isotope of astatine is astatine-210, which has a half-life of about 8.1 hours. This isotope's primary decay mode is positron emission to the relatively long-lived alpha emitter, polonium-210. In total, only five isotopes of astatine have half-lives exceeding one hour: those between 207. And 211. The least stable ground state isotope is astatine-213, with a half-life of about 125 nanoseconds. It undergoes alpha decay to the extremely long-lived (in practice, stable) isotope bismuth-209.

See also

  1. ^ In the table, under the words "mass excess", the energy equivalents are given rather than the real mass excesses; "mass excess daughter" stands for the energy equivalent of the mass excess sum of the daughter of the isotope and the alpha particle; "alpha decay half-life" refers to the half-life if decay modes other than alpha are omitted.
  2. ^ Since astatine-221 has not been shown to undergo alpha decay, the alpha decay energy is theoretical. The value for mass excess is calculated rather than measured.
  3. ^ "m1" means that this state of the isotope is the next possible one above – energy greater than – the ground state. "m2" and similar designations refer to further higher energy states. The number may be dropped if there is only one well-established meta state, such as astatine-216m. Note that other designation techniques exist.
  4. ^ This means that if decay modes other than alpha are omitted, then astatine-210 has an alpha half-life of 4,628.6 hours (128.9 days) and astatine-211 has one of 17.2 hours (0.9 days). Therefore, astatine-211 is less stable toward alpha decay than the lighter isotope, and is more likely to undergo alpha decay in the same time period.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Kokkonen, Henna. "Decay properties of the new isotopes 188At and 190At" (PDF). University of Jyväskylä. Retrieved 8 June 2023.
  3. ^ Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (1 August 2003). "Alpha-decay studies of the new isotopes 191At and 193At" (PDF). The European Physical Journal A - Hadrons and Nuclei. 17 (4): 537–558. Bibcode:2003EPJA...17..537K. doi:10.1140/epja/i2002-10162-1. ISSN 1434-601X. S2CID 122384851. Retrieved 23 June 2023.
  4. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940.
  5. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  6. ^ https://www.nndc.bnl.gov/ensnds/212/At/adopted.pdf, NNDC Chart of Nuclides, Adopted Levels for At.
  7. ^ https://www.nndc.bnl.gov/ensnds/213/At/adopted.pdf, NNDC Chart of Nuclides, Adopted Levels for At.
  8. ^ https://www.nndc.bnl.gov/ensnds/216/At/adopted.pdf, NNDC Chart of Nuclides, Adopted Levels for At.
  9. ^ Cubiss, J. G.; Andreyev, A. N.; Barzakh, A. E.; Andel, B.; Antalic, S.; Cocolios, T. E.; Goodacre, T. Day; Fedorov, D. V.; Fedosseev, V. N.; Ferrer, R.; Fink, D. A.; Gaffney, L. P.; Ghys, L.; Huyse, M.; Kalaninová, Z.; Köster, U.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Stryjczyk, M.; L.Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wilson, G. L. (2019-06-14). "Fine structure in the α decay of At218". Physical Review C. 99 (6). American Physical Society (APS): 064317. doi:10.1103/physrevc.99.064317. ISSN 2469-9985. S2CID 197508141.
  10. ^ Lavrukhina & Pozdnyakov 1966, p. 232.
  11. ^ Rankama, Kalervo (1956). Isotope geology (2nd ed.). Pergamon Press. p. 403. ISBN 978-0-470-70800-2.
  12. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.