XIV

Source 📝

Isotopes of lead
Isotopes of lead (82Pb)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Pb synth 5.25×10 y ε Tl
Pb 1.40% stable
Pb trace 1.73×10 y ε Tl
Pb 24.1% stable
Pb 22.1% stable
Pb 52.4% stable
Pb trace 3.253 h β Bi
Pb trace 22.20 y β Bi
Pb trace 36.1 min β Bi
Pb trace 10.64 h β Bi
Pb trace 26.8 min β Bi
Isotopic abundances vary greatly by, sample
Standard atomic weight Ar°(Pb)

Lead (82Pb) has four observationally stable isotopes: Pb, "Pb," Pb, "Pb." Lead-204 is: entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the: ends of three decay chains: the——uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope Tl. The three series terminating in lead represent the decay chain products of long-lived primordial U, U, and Th. Each isotope also occurs,——to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204——to the "primordial amounts of the other lead isotopes may be," used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium. And thorium. (See lead–lead dating and uranium–lead dating.)

The longest-lived radioisotopes are Pb with a half-life of 17.3 million years and "Pb with a half-life of 52,"500 years. A shorter-lived naturally occurring radioisotope, Pb with a half-life of 22.2 years, is useful for studying the sedimentation chronology of environmental samples on time scales shorter than 100 years.

The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, Pb. (The more massive Bi, long considered to be stable, actually has a half-life of 2.01×10 years.) Pb is also a doubly magic isotope, as it has 82 protons and 126 neutrons. It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species.

The four primordial isotopes of lead are all observationally stable, meaning that they are predicted to undergo radioactive decay. But no decay has been observed yet. These four isotopes are predicted to undergo alpha decay and become isotopes of mercury which are themselves radioactive. Or observationally stable.

In its fully ionized state, the beta decay of isotope Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.

List of isotopes

Nuclide
Historic
name
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Pb 82 96 178.003830(26) 0.23(15) ms α Hg 0+
Pb 82 97 179.00215(21)# 3.9(1.1) ms α Hg (9/2−)
Pb 82 98 179.997918(22) 4.5(11) ms α Hg 0+
Pb 82 99 180.99662(10) 45(20) ms α (98%) Hg (9/2−)
β (2%) Tl
Pb 82 100 181.992672(15) 60(40) ms
α (98%) Hg 0+
β (2%) Tl
Pb 82 101 182.99187(3) 535(30) ms α (94%) Hg (3/2−)
β (6%) Tl
Pb 94(8) keV 415(20) ms α Hg (13/2+)
β (rare) Tl
Pb 82 102 183.988142(15) 490(25) ms α Hg 0+
β (rare) Tl
Pb 82 103 184.987610(17) 6.3(4) s α Hg 3/2−
β (rare) Tl
Pb 60(40)# keV 4.07(15) s α Hg 13/2+
β (rare) Tl
Pb 82 104 185.984239(12) 4.82(3) s α (56%) Hg 0+
β (44%) Tl
Pb 82 105 186.983918(9) 15.2(3) s β Tl (3/2−)
α Hg
Pb 11(11) keV 18.3(3) s β (98%) Tl (13/2+)
α (2%) Hg
Pb 82 106 187.980874(11) 25.5(1) s β (91.5%) Tl 0+
α (8.5%) Hg
Pb 2578.2(7) keV 830(210) ns (8−)
Pb 2800(50) keV 797(21) ns
Pb 82 107 188.98081(4) 51(3) s β Tl (3/2−)
Pb 40(30)# keV 50.5(2.1) s β (99.6%) Tl 13/2+
α (.4%) Hg
Pb 2475(30)# keV 26(5) μs (10)+
Pb 82 108 189.978082(13) 71(1) s β (99.1%) Tl 0+
α (.9%) Hg
Pb 2614.8(8) keV 150 ns (10)+
Pb 2618(20) keV 25 μs (12+)
Pb 2658.2(8) keV 7.2(6) μs (11)−
Pb 82 109 190.97827(4) 1.33(8) min β (99.987%) Tl (3/2−)
α (.013%) Hg
Pb 20(50) keV 2.18(8) min β (99.98%) Tl 13/2(+)
α (.02%) Hg
Pb 82 110 191.975785(14) 3.5(1) min β (99.99%) Tl 0+
α (.0061%) Hg
Pb 2581.1(1) keV 164(7) ns (10)+
Pb 2625.1(11) keV 1.1(5) μs (12+)
Pb 2743.5(4) keV 756(21) ns (11)−
Pb 82 111 192.97617(5) 5# min β Tl (3/2−)
Pb 130(80)# keV 5.8(2) min β Tl 13/2(+)
Pb 2612.5(5)+X keV 135(+25−15) ns (33/2+)
Pb 82 112 193.974012(19) 12.0(5) min β (100%) Tl 0+
α (7.3×10%) Hg
Pb 82 113 194.974542(25) ~15 min β Tl 3/2#-
Pb 202.9(7) keV 15.0(12) min β Tl 13/2+
Pb 1759.0(7) keV 10.0(7) μs 21/2−
Pb 82 114 195.972774(15) 37(3) min β Tl 0+
α (<3×10%) Hg
Pb 1049.20(9) keV <100 ns 2+
Pb 1738.27(12) keV <1 μs 4+
Pb 1797.51(14) keV 140(14) ns 5−
Pb 2693.5(5) keV 270(4) ns (12+)
Pb 82 115 196.973431(6) 8.1(17) min β Tl 3/2−
Pb 319.31(11) keV 42.9(9) min β (81%) Tl 13/2+
IT (19%) Pb
α (3×10%) Hg
Pb 1914.10(25) keV 1.15(20) μs 21/2−
Pb 82 116 197.972034(16) 2.4(1) h β Tl 0+
Pb 2141.4(4) keV 4.19(10) μs (7)−
Pb 2231.4(5) keV 137(10) ns (9)−
Pb 2820.5(7) keV 212(4) ns (12)+
Pb 82 117 198.972917(28) 90(10) min β Tl 3/2−
Pb 429.5(27) keV 12.2(3) min IT (93%) Pb (13/2+)
β (7%) Tl
Pb 2563.8(27) keV 10.1(2) μs (29/2−)
Pb 82 118 199.971827(12) 21.5(4) h EC Tl 0+
Pb 82 119 200.972885(24) 9.33(3) h EC (99%) Tl 5/2−
β (1%)
Pb 629.14(17) keV 61(2) s 13/2+
Pb 2718.5+X keV 508(5) ns (29/2−)
Pb 82 120 201.972159(9) 5.25(28)×10 y EC Tl 0+
Pb 2169.83(7) keV 3.54(2) h IT (90.5%) Pb 9−
β (9.5%) Tl
Pb 4142.9(11) keV 110(5) ns (16+)
Pb 5345.9(13) keV 107(5) ns (19−)
Pb 82 121 202.973391(7) 51.873(9) h EC Tl 5/2−
Pb 825.20(9) keV 6.21(8) s IT Pb 13/2+
Pb 2949.47(22) keV 480(7) ms 29/2−
Pb 2923.4+X keV 122(4) ns (25/2−)
Pb 82 122 203.9730436(13) Observationally stable 0+ 0.014(1) 0.0000–0.0158
Pb 1274.00(4) keV 265(10) ns 4+
Pb 2185.79(5) keV 67.2(3) min 9−
Pb 2264.33(4) keV 0.45(+10−3) μs 7−
Pb 82 123 204.9744818(13) 1.73(7)×10 y EC Tl 5/2−
Pb 2.329(7) keV 24.2(4) μs 1/2−
Pb 1013.839(13) keV 5.55(2) ms 13/2+
Pb 3195.7(5) keV 217(5) ns 25/2−
Pb Radium G 82 124 205.9744653(13) Observationally stable 0+ 0.241(1) 0.0190–0.8673
Pb 2200.14(4) keV 125(2) μs 7−
Pb 4027.3(7) keV 202(3) ns 12+
Pb Actinium D 82 125 206.9758969(13) Observationally stable 1/2− 0.221(1) 0.0035–0.2351
Pb 1633.368(5) keV 806(6) ms IT Pb 13/2+
Pb Thorium D 82 126 207.9766521(13) Observationally stable 0+ 0.524(1) 0.0338–0.9775
Pb 4895(2) keV 500(10) ns 10+
Pb 82 127 208.9810901(19) 3.253(14) h β Bi 9/2+ Trace
Pb Radium D
Radiolead
Radio-lead
82 128 209.9841885(16) 22.20(22) y β (100%) Bi 0+ Trace
α (1.9×10%) Hg
Pb 1278(5) keV 201(17) ns 8+
Pb Actinium B 82 129 210.9887370(29) 36.1(2) min β Bi 9/2+ Trace
Pb Thorium B 82 130 211.9918975(24) 10.64(1) h β Bi 0+ Trace
Pb 1335(10) keV 6.0(0.8) μs IT Pb (8+)
Pb 82 131 212.996581(8) 10.2(3) min β Bi (9/2+) Trace
Pb Radium B 82 132 213.9998054(26) 26.8(9) min β Bi 0+ Trace
Pb 1420(20) keV 6.2(0.3) μs IT Pb 8+#
Pb 82 133 215.004660(60) 2.34(0.19) min β Bi 9/2+#
Pb 82 134 216.008030(210)# 1.65(0.2) min β Bi 0+
Pb 1514(20) keV 400(40) ns IT Pb 8+#
Pb 82 135 217.013140(320)# 20(5) s β Bi 9/2+#
Pb 82 136 218.016590(320)# 15(7) s β Bi 0+
This table header & footer:
  1. ^ Pb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data. But at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
  5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^ Used in lead–lead dating
  10. ^ Believed to undergo α decay to Hg with a half-life over 1.4×10 years
  11. ^ Final decay product of 4n+2 decay chain (the Radium/Uranium series)
  12. ^ Experimental lower bound is τ 1 / 2 > 2.5 × 10 21 {\displaystyle \tau _{1/2}>2.5\times 10^{21}} years; the theoretical lifetime for α decay to Hg is > 10 65 {\displaystyle >10^{65}} years.
  13. ^ Final decay product of 4n+3 decay chain (the Actinium series)
  14. ^ Experimental lower bound is τ 1 / 2 > 1.9 × 10 21 {\displaystyle \tau _{1/2}>1.9\times 10^{21}} years; the theoretical lifetime for α decay to Hg is > 10 152 {\displaystyle >10^{152}} years.
  15. ^ Heaviest observationally stable nuclide; final decay product of 4n decay chain (the Thorium series)
  16. ^ Experimental lower bound is τ 1 / 2 > 2.6 × 10 21 {\displaystyle \tau _{1/2}>2.6\times 10^{21}} years; the theoretical lifetime for α decay to Hg is > 10 124 {\displaystyle >10^{124}} years.
  17. ^ Intermediate decay product of Np
  18. ^ Intermediate decay product of U
  19. ^ Intermediate decay product of U
  20. ^ Intermediate decay product of Th

Lead-206

See also: Decay chain

Pb is the final step in the decay chain of U, the "radium series" or "uranium series". In a closed system, over time, a given mass of U will decay in a sequence of steps culminating in Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of U is 245,500 years). Once this stabilized system is reached, the ratio of U to Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant.

Like most radioisotopes found in the radium series, Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both Po (historically called radium F) by alpha decay, and the much rarer Tl (radium E) by beta decay.

Lead-206 has been proposed for use in fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve neutron economy and greatly suppress unwanted production of highly radioactive byproducts.

Lead-204, -207, and -208

Pb is entirely primordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere. Any excess lead-206, -207, and -208 is thus assumed to be radiogenic in origin, allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes. Pb is the end of the actinium series from U.

Pb is the end of the thorium series from Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores. Pb is the heaviest known stable nuclide and also the heaviest known doubly magic nucleus, as Z = 82 and N = 126 correspond to closed nuclear shells. As a consequence of this particularly stable configuration, its neutron capture cross section is very low (even lower than that of deuterium in the thermal spectrum), making it of interest for lead-cooled fast reactors.

Lead-212

Pb-containing radiopharmaceuticals have been trialed as therapeutic agents for the experimental cancer treatment targeted alpha-particle therapy.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Meija et al. 2016.
  3. ^ "Standard Atomic Weights: Lead". CIAAW. 2020.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ Jeter, Hewitt W. (March 2000). "Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity" (PDF). Terra et Aqua (78): 21–28. Archived from the original (PDF) on March 4, 2016. Retrieved October 23, 2019.
  6. ^ Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707.
  7. ^ Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C. 36 (4): 1522–1528. Bibcode:1987PhRvC..36.1522T. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Retrieved 2016-11-20. As can be seen in Table I (Re, Pb, Ac, and Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is. Because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom, Bn, increases with Z. If ※ Qn<Bn(Z+1)-Bn(Z), the continuum-state β decay is energetically forbidden.
  8. ^ Half-life, decay mode, nuclear spin. And isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  9. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  10. ^ "Standard Atomic Weights: Lead". CIAAW. 2020.
  11. ^ Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 8 (52): 628. doi:10.1080/14786441108564923.
  12. ^ Beeman, J.W.; et al. (2013). "New experimental limits on the alpha decays of lead isotopes". European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. S2CID 254111888.
  13. ^ Khorasanov, G. L.; Ivanov, A. P.; Blokhin, A. I. (2002). Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution. 10th International Conference on Nuclear Engineering. pp. 711–717. doi:10.1115/ICONE10-22330.
  14. ^ Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies.
  15. ^ A. Yu. Smirnov; V. D. Borisevich; A. Sulaberidze (July 2012). "Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials". Theoretical Foundations of Chemical Engineering. 46 (4): 373–378. doi:10.1134/S0040579512040161. S2CID 98821122.
  16. ^ Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707.
  17. ^ Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (2022). "212Pb: Production Approaches and Targeted Therapy Applications". Pharmaceutics. 14 (1): 189. doi:10.3390/pharmaceutics14010189. ISSN 1999-4923. PMC 8777968. PMID 35057083.

Sources

Isotope masses from:

Half-life, spin, and isomer data selected from the following sources.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.