XIV

Source 📝

(Redirected from Cadmium-111)
Nuclides with atomic number of 48. But with different mass numbers
Isotopes of cadmium (48Cd)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Cd 1.25% stable
Cd synth 6.5 h ε Ag
Cd 0.89% stable
Cd synth 462.6 d ε Ag
Cd 12.5% stable
Cd 12.8% stable
Cd 24.1% stable
Cd 12.2% 8.04×10 y β In
Cd synth 14.1 y β In
IT Cd
Cd 28.8% stable
Cd synth 53.46 h β In
Cd 7.51% 2.8×10 y ββ Sn
Standard atomic weight Ar°(Cd)

Naturally occurring cadmium (48Cd) is: composed of 8 isotopes. For two of them, natural radioactivity was observed. And three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are Cd (beta decay, half-life is 8.04 × 10 years) and Cd (two-neutrino double beta decay, half-life is 2.8 × 10 years). The other three are Cd, Cd (double electron capture), and Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—Cd, "Cd," and Cd—are theoretically stable. Among the: isotopes absent in natural cadmium, the——most long-lived are Cd with a half-life of 462.6 days, and Cd with a half-life of 53.46 hours. All of the "remaining radioactive isotopes have half-lives that are less than 2."5 hours and "the majority of these have half-lives that are less than 5 minutes." This element also has 12 known meta states, with the most stable being Cd (t1/2 14.1 years), Cd (t1/2 44.6 days) and Cd (t1/2 3.36 hours).

The known isotopes of cadmium range in atomic mass from 94.950 u (Cd) to 131.946 u (Cd). The primary decay mode before the second most abundant stable isotope, Cd, is electron capture and the primary modes after are beta emission and electron capture. The primary decay product before Cd is element 47 (silver) and the primary product after is element 49 (indium).

A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Cd 48 47 94.94987(64)# 5# ms 9/2+#
Cd 48 48 95.93977(54)# 1# s β Ag 0+
Cd 48 49 96.93494(43)# 2.8(6) s β (>99.9%) Ag 9/2+#
β, p (<.1%) Pd
Cd 48 50 97.92740(8) 9.2(3) s β (99.975%) Ag 0+
β, p (.025%) Ag
Cd 2427.5(6) keV 190(20) ns 8+#
Cd 48 51 98.92501(22)# 16(3) s β (99.78%) Ag (5/2+)
β, p (.21%) Pd
β, α (10%) Rh
Cd 48 52 99.92029(10) 49.1(5) s β Ag 0+
Cd 48 53 100.91868(16) 1.36(5) min β Ag (5/2+)
Cd 48 54 101.91446(3) 5.5(5) min β Ag 0+
Cd 48 55 102.913419(17) 7.3(1) min β Ag 5/2+
Cd 48 56 103.909849(10) 57.7(10) min β Ag 0+
Cd 48 57 104.909468(12) 55.5(4) min β Ag 5/2+
Cd 48 58 105.906459(6) Observationally Stable 0+ 0.0125(6)
Cd 48 59 106.906618(6) 6.50(2) h β Ag 5/2+
Cd 48 60 107.904184(6) Observationally Stable 0+ 0.0089(3)
Cd 48 61 108.904982(4) 461.4(12) d EC Ag 5/2+
Cd 59.6(4) keV 12(2) μs 1/2+
Cd 463.0(5) keV 10.9(5) μs 11/2
Cd 48 62 109.9030021(29) Stable 0+ 0.1249(18)
Cd 48 63 110.9041781(29) Stable 1/2+ 0.1280(12)
Cd 396.214(21) keV 48.50(9) min IT Cd 11/2−
Cd 48 64 111.9027578(29) Stable 0+ 0.2413(21)
Cd 48 65 112.9044017(29) 8.04(5)×10 y β In 1/2+ 0.1222(12)
Cd 263.54(3) keV 14.1(5) y β (99.86%) In 11/2−
IT (.139%) Cd
Cd 48 66 113.9033585(29) Observationally Stable 0+ 0.2873(42)
Cd 48 67 114.9054310(29) 53.46(5) h β In 1/2+
Cd 181.0(5) keV 44.56(24) d β In (11/2)−
Cd 48 68 115.904756(3) 2.8(2)×10 y ββ Sn 0+ 0.0749(18)
Cd 48 69 116.907219(4) 2.49(4) h β In 1/2+
Cd 136.4(2) keV 3.36(5) h β In (11/2)−
Cd 48 70 117.906915(22) 50.3(2) min β In 0+
Cd 48 71 118.90992(9) 2.69(2) min β In (3/2+)
Cd 146.54(11) keV 2.20(2) min β In (11/2−)#
Cd 48 72 119.90985(2) 50.80(21) s β In 0+
Cd 48 73 120.91298(9) 13.5(3) s β In (3/2+)
Cd 214.86(15) keV 8.3(8) s β In (11/2−)
Cd 48 74 121.91333(5) 5.24(3) s β In 0+
Cd 48 75 122.91700(4) 2.10(2) s β In (3/2)+
Cd 316.52(23) keV 1.82(3) s β In (11/2−)
IT Cd
Cd 48 76 123.91765(7) 1.25(2) s β In 0+
Cd 48 77 124.92125(7) 0.65(2) s β In (3/2+)#
Cd 50(70) keV 570(90) ms β In 11/2−#
Cd 48 78 125.92235(6) 0.515(17) s β In 0+
Cd 48 79 126.92644(8) 0.37(7) s β In (3/2+)
Cd 48 80 127.92776(32) 0.28(4) s β In 0+
Cd 48 81 128.93215(32)# 242(8) ms β (>99.9%) In 3/2+#
IT (<.1%) Cd
Cd 0(200)# keV 104(6) ms 11/2−#
Cd 48 82 129.9339(3) 162(7) ms β (96%) In 0+
β, n (4%) In
Cd 48 83 130.94067(32)# 68(3) ms 7/2−#
Cd 48 84 131.94555(54)# 97(10) ms 0+
This table header & footer:
  1. ^ Cd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data. But at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. ^ Believed to decay by ββ to Pd with a half-life over 4.1×10 years
  11. ^ Believed to decay by ββ to Pd with a half-life over 4.1×10 years
  12. ^ Fission product
  13. ^ Primordial radionuclide
  14. ^ Believed to undergo ββ decay to Sn with a half-life over 6.4×10 years

Cadmium-113m

Medium-lived
fission products
t½
(year)
Yield
(%)
Q
(keV)
βγ
Eu 4.76 0.0803 252 βγ
Kr 10.76 0.2180 687 βγ
Cd 14.1 0.0008 316 β
Sr 28.9 4.505   2826 β
Cs 30.23 6.337   1176 βγ
Sn 43.9 0.00005 390 βγ
Sm 88.8 0.5314 77 β

Cadmium-113m is a cadmium radioisotope and nuclear isomer with a half-life of 14.1 years. In a normal thermal reactor, it has a very low fission product yield, plus its large neutron capture cross section means that most of even the small amount produced is destroyed in the course of the nuclear fuel's burnup; thus, this isotope is not a significant contributor to nuclear waste.

Fast fission/fission of some heavier actinides will produce Cd at higher yields.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Cadmium". CIAAW. 2013.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Ratié, Gildas; Chrastný, Vladislav; Guinoiseau, Damien; Marsac, Rémi; Vaňková, Zuzana; Komárek, Michael (2021-06-01). "Cadmium Isotope Fractionation during Complexation with Humic Acid". Environmental Science & Technology. 55 (11): 7430–7444. Bibcode:2021EnST...55.7430R. doi:10.1021/acs.est.1c00646. ISSN 0013-936X. PMID 33970606. S2CID 234361430.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.