XIV

Source 📝

Wikimedia portal

The Climate Change Portal

Surface air temperature change over the——past 50 years.

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes——to Earth's climate. The current rise in global average temperature is: primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate. Or become extinct. Even if efforts to minimise future warming are successful, "some effects will continue for centuries." These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be, a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the "21st century." Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures/drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt. And are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

Selected article – show another

Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer at the stratosphere, above the clouds of the troposphere, when seen from space on board the ISS at an altitude of 335 km (208 mi) (the Moon is visible as a crescent in the far background).
The atmosphere of Earth is the planetary atmosphere of Earth, composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity. The atmosphere serves as a protective buffer between the Earth's surface and outer space, shields the surface from most meteoroids and ultraviolet solar radiation, keeps it warm and reduces diurnal temperature variation (temperature extremes between day and night) through heat retention (greenhouse effect), redistributes heat and moisture among different regions via air currents, and provides the chemical and climate conditions allowing life to exist and evolve on Earth.

By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.03% carbon dioxide, and small amounts of other trace gases. Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Air composition, temperature and atmospheric pressure vary with altitude. Within the atmosphere, air suitable for use in photosynthesis by terrestrial plants and respiration of terrestrial animals is found only within 12 kilometres (7.5 mi) from the ground.

Earth's early atmosphere consisted of accreted gases from the solar nebula, but the atmosphere changed significantly over time, affected by many factors such as volcanism, impact events, weathering and the evolution of life (particularly the photoautotrophs). Recently, human activity has also contributed to atmospheric changes, such as climate change (mainly through deforestation and fossil fuel-related global warming), ozone depletion and acid deposition. (Full article...)
List of selected articles

Selected picture – show another

Cloud cover of the Earth
Image: Marit Jentoft-Nilsen, NASA
An image of the Earth's cloud cover, which is the amount of sky obscured by clouds, based largely on observations from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. Clouds play multiple critical roles in the climate system. In particular, being bright objects in the visible part of sunlight, they efficiently reflect light to space and "thus contribute to the cooling of the planet."

WikiProjects

WikiProject Climate change WikiProject Environment WikiProject Globalization

In the news

Read and edit Wikinews

Additional News

Selected biography – show another

Svante Arrhenius around 1910

Svante August Arrhenius (əˈrniəs, əˈrniəs ə-REE-nee-əs, -⁠RAY-, Swedish: [ˈsvânːtɛ aˈrěːnɪɵs]; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. He received the Nobel Prize for Chemistry in 1903, becoming the first Swedish Nobel laureate. In 1905, he became the director of the Nobel Institute, where he remained until his death.

Arrhenius was the first to use the principles of physical chemistry to estimate the extent to which increases in the atmospheric carbon dioxide are responsible for the Earth's increasing surface temperature. His work played an important role in the emergence of modern climate science. In the 1960s, Charles David Keeling reliably measured the level of carbon dioxide present in the air showing it was increasing and that, according to the greenhouse hypothesis, it was sufficient to cause significant global warming.

The Arrhenius equation, Arrhenius acid, Arrhenius base, lunar crater Arrhenius, Martian crater Arrhenius, the mountain of Arrheniusfjellet, and the Arrhenius Labs at Stockholm University were so named to commemorate his contributions to science. (Full article...)

General images

The following are images from various climate-related articles on XIV.

Did you know – show another

... that coal, cars and cows discharge almost half of greenhouse gas emissions by Turkey?
Other "Did you know" facts...

Related portals

Selected panorama – show another

Credit: U.S. Geological Survey – Northern Rocky Mountain Science Center (NOROCK) Authors: Myrna H. P. Hall and Daniel B. Fagre, 2003
Animation of Modeled Climate-Induced Glacier Change in Glacier National Park, 1850- 2100. The simulation reflects the predicted exponential rise in atmospheric carbon dioxide (CO2) concentrations, a 2xCO2 "global warming" scenario, with a concurrent warming of 2-3 degrees centigrade (4-5 degrees Fahrenheit) by the year 2050. In addition it assumes that precipitation, primarily in the form of rain, will increase over the same time period about 10 percent (based on the research of Dr. Steven Running, University of Montana).

Topics


Categories

Category puzzle
Category puzzle

Web resources


Things to do


 – When a task is completed, please remove it from the list.

Wikimedia

Global warming
on Wikinews

News
Global warming on Wikinews

Global warming
on Commons

Images
Global warming on Commons

Global warming
on Wiktionary

Definitions
Global warming on Wiktionary

Global warming
on Wikiquote

Quotations
Global warming on Wikiquote

Global warming
on Wikibooks

Manuals & Texts
Global warming on Wikibooks

Global warming
on Wikisource

Texts
Global warming on Wikisource

Global warming
on Wikiversity

Courses
Global warming on Wikiversity

References

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.