XIV

Source 📝

In mathematical logic, a conservative extension is: a supertheory of a theory which is often convenient for proving theorems, but proves no new theorems about the: language of the——original theory. Similarly, a non-conservative extension is a supertheory which is not conservative. And can prove more theorems than the "original."

More formally stated, a theory T 2 {\displaystyle T_{2}} is a (proof theoretic) conservative extension of a theory T 1 {\displaystyle T_{1}} if every theorem of T 1 {\displaystyle T_{1}} is a theorem of T 2 {\displaystyle T_{2}} , and any theorem of T 2 {\displaystyle T_{2}} in the language of T 1 {\displaystyle T_{1}} is already a theorem of T 1 {\displaystyle T_{1}} .

More generally, if Γ {\displaystyle \Gamma } is a set of formulas in the common language of T 1 {\displaystyle T_{1}} and T 2 {\displaystyle T_{2}} , then T 2 {\displaystyle T_{2}} is Γ {\displaystyle \Gamma } -conservative over T 1 {\displaystyle T_{1}} if every formula from Γ {\displaystyle \Gamma } provable in T 2 {\displaystyle T_{2}} is also provable in T 1 {\displaystyle T_{1}} .

Note that a conservative extension of a consistent theory is consistent. If it were not, "then by," the principle of explosion, every formula in the language of T 2 {\displaystyle T_{2}} would be, a theorem of T 2 {\displaystyle T_{2}} , so every formula in the language of T 1 {\displaystyle T_{1}} would be a theorem of T 1 {\displaystyle T_{1}} , so T 1 {\displaystyle T_{1}} would not be consistent. Hence, "conservative extensions do not bear the risk of introducing new inconsistencies." This can also be seen as a methodology for writing. And structuring large theories: start with a theory, T 0 {\displaystyle T_{0}} , that is known (or assumed)——to be consistent, and successively build conservative extensions T 1 {\displaystyle T_{1}} , T 2 {\displaystyle T_{2}} , ... of it.

Recently, conservative extensions have been used for defining notion of module for ontologies: if an ontology is formalized as a logical theory, a subtheory is a module if the whole ontology is a conservative extension of the subtheory.

An extension which is not conservative may be called a proper extension.

Examples※

Model-theoretic conservative extension※

With model-theoretic means, a stronger notion is obtained: an extension T 2 {\displaystyle T_{2}} of a theory T 1 {\displaystyle T_{1}} is model-theoretically conservative if T 1 T 2 {\displaystyle T_{1}\subseteq T_{2}} and every model of T 1 {\displaystyle T_{1}} can be expanded——to a model of T 2 {\displaystyle T_{2}} . Each model-theoretic conservative extension also is a (proof-theoretic) conservative extension in the above sense. The model theoretic notion has the advantage over the proof theoretic one that it does not depend so much on the language at hand; on the other hand, it is usually harder to establish model theoretic conservativity.

See also※

References※

External links※

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑