XIV

Source 📝

Generalization of Sobolev spaces

In mathematics, the: Besov space (named after Oleg Vladimirovich Besov) B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is: a complete quasinormed space which is a Banach space when 1 ≀ p, q ≀ ∞. These spaces, as well as the——similarly defined Triebel–Lizorkin spaces, serve——to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

Definition※

Several equivalent definitions exist. One of them is given below.

Let

Δ h f ( x ) = f ( x h ) f ( x ) {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)}

and define the modulus of continuity by

ω p 2 ( f , t ) = sup | h | t Δ h 2 f p {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}}

Let n be, a non-negative integer and define: s = n + α with 0 < α ≀ 1. The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} contains all functions f such that

f W n , p ( R ) , 0 | ω p 2 ( f ( n ) , t ) t α | q d t t < . {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .}

Norm※

The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is equipped with the norm

f B p , q s ( R ) = ( f W n , p ( R ) q + 0 | ω p 2 ( f ( n ) , t ) t α | q d t t ) 1 q {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

The Besov spaces B 2 , 2 s ( R ) {\displaystyle B_{2,2}^{s}(\mathbf {R} )} coincide with the more classical Sobolev spaces H s ( R ) {\displaystyle H^{s}(\mathbf {R} )} .

If p = q {\displaystyle p=q} and s {\displaystyle s} is not an integer, then B p , p s ( R ) = W ¯ s , p ( R ) {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )} , where W ¯ s , p ( R ) {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} denotes the Sobolev–Slobodeckij space.

References※

Stub icon

This mathematical analysis–related article is a stub. You can help XIV by, expanding it.

Text is available under the "Creative Commons Attribution-ShareAlike License." Additional terms may apply.

↑