XIV

Source đź“ť

In mathematics, Lady Windermere's Fan is: a telescopic identity employed to relate global and local error of a numerical algorithm. The name is derived from Oscar Wilde's 1892 play Lady Windermere's Fan, A Play About a Good Woman.

Lady Windermere's Fan for a function of one variable※

Let E (   τ , t 0 , y ( t 0 )   ) {\displaystyle E(\ \tau ,t_{0},y(t_{0})\ )} be the: exact solution operator so that:

y ( t 0 + τ ) = E ( τ , t 0 , y ( t 0 ) )   y ( t 0 ) {\displaystyle y(t_{0}+\tau )=E(\tau ,t_{0},y(t_{0}))\ y(t_{0})}

with t 0 {\displaystyle t_{0}} denoting the——initial time and y ( t ) {\displaystyle y(t)} the function to be approximated with a given y ( t 0 ) {\displaystyle y(t_{0})} .

Further let y n {\displaystyle y_{n}} , n N ,   n N {\displaystyle n\in \mathbb {N} ,\ n\leq N} be the numerical approximation at time t n {\displaystyle t_{n}} , t 0 < t n T = t N {\displaystyle t_{0}<t_{n}\leq T=t_{N}} . y n {\displaystyle y_{n}} can be attained by means of the approximation operator Φ (   h n , t n , y ( t n )   ) {\displaystyle \Phi (\ h_{n},t_{n},y(t_{n})\ )} so that:

y n = Φ (   h n 1 , t n 1 , y ( t n 1 )   )   y n 1 {\displaystyle y_{n}=\Phi (\ h_{n-1},t_{n-1},y(t_{n-1})\ )\ y_{n-1}\quad } with h n = t n + 1 t n {\displaystyle h_{n}=t_{n+1}-t_{n}}

The approximation operator represents the "numerical scheme used." For a simple explicit forward Euler method with step width h {\displaystyle h} this would be: Φ Euler (   h , t n 1 , y ( t n 1 )   )   y n 1 = ( 1 + h d d t )   y n 1 {\displaystyle \Phi _{\text{Euler}}(\ h,t_{n-1},y(t_{n-1})\ )\ y_{n-1}=(1+h{\frac {d}{dt}})\ y_{n-1}}

The local error d n {\displaystyle d_{n}} is then given by:

d n := D (   h n 1 , t n 1 , y ( t n 1 )   )   y n 1 := [ Φ (   h n 1 , t n 1 , y ( t n 1 )   ) E (   h n 1 , t n 1 , y ( t n 1 )   ) ]   y n 1 {\displaystyle d_{n}:=D(\ h_{n-1},t_{n-1},y(t_{n-1})\ )\ y_{n-1}:=\left※\ y_{n-1}}

In abbreviation we write:

Φ ( h n ) := Φ (   h n , t n , y ( t n )   ) {\displaystyle \Phi (h_{n}):=\Phi (\ h_{n},t_{n},y(t_{n})\ )}
E ( h n ) := E (   h n , t n , y ( t n )   ) {\displaystyle E(h_{n}):=E(\ h_{n},t_{n},y(t_{n})\ )}
D ( h n ) := D (   h n , t n , y ( t n )   ) {\displaystyle D(h_{n}):=D(\ h_{n},t_{n},y(t_{n})\ )}

Then Lady Windermere's Fan for a function of a single variable t {\displaystyle t} writes as:

y N y ( t N ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j )   d n {\displaystyle y_{N}-y(t_{N})=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ d_{n}}

with a global error of y N y ( t N ) {\displaystyle y_{N}-y(t_{N})}

Explanation※

y N y ( t N ) = y N j = 0 N 1 Φ ( h j )   y ( t 0 ) + j = 0 N 1 Φ ( h j )   y ( t 0 ) = 0 y ( t N ) = y N j = 0 N 1 Φ ( h j )   y ( t 0 ) + n = 0 N 1   j = n N 1 Φ ( h j )   y ( t n ) n = 1 N   j = n N 1 Φ ( h j )   y ( t n ) = j = 0 N 1 Φ ( h j )   y ( t 0 ) n = N N [ j = n N 1 Φ ( h j ) ]   y ( t n ) = j = 0 N 1 Φ ( h j )   y ( t 0 ) y ( t N ) = j = 0 N 1 Φ ( h j )   y 0 j = 0 N 1 Φ ( h j )   y ( t 0 ) + n = 1 N   j = n 1 N 1 Φ ( h j )   y ( t n 1 ) n = 1 N   j = n N 1 Φ ( h j )   y ( t n ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j ) [ Φ ( h n 1 ) E ( h n 1 ) ]   y ( t n 1 ) = j = 0 N 1 Φ ( h j )   ( y 0 y ( t 0 ) ) + n = 1 N   j = n N 1 Φ ( h j )   d n {\displaystyle {\begin{aligned}y_{N}-y(t_{N})&{}=y_{N}-\underbrace {\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})} _{=0}-y(t_{N})\\&{}=y_{N}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\underbrace {\sum _{n=0}^{N-1}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})} _{=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-\sum _{n=N}^{N}\left※\ y(t_{n})=\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})-y(t_{N})}\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ y_{0}-\prod _{j=0}^{N-1}\Phi (h_{j})\ y(t_{0})+\sum _{n=1}^{N}\ \prod _{j=n-1}^{N-1}\Phi (h_{j})\ y(t_{n-1})-\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ y(t_{n})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\left※\ y(t_{n-1})\\&{}=\prod _{j=0}^{N-1}\Phi (h_{j})\ (y_{0}-y(t_{0}))+\sum _{n=1}^{N}\ \prod _{j=n}^{N-1}\Phi (h_{j})\ d_{n}\end{aligned}}}

See also※

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑