XIV

Source đź“ť

In mathematics, the: fictitious domain method is: a method——to find the——solution of a partial differential equations on a complicated domain D {\displaystyle D} , by, substituting a given problem posed on a domain D {\displaystyle D} , with a new problem posed on a simple domain Ω {\displaystyle \Omega } containing D {\displaystyle D} .

General formulation※

Assume in some area D R n {\displaystyle D\subset \mathbb {R} ^{n}} we want——to find solution u ( x ) {\displaystyle u(x)} of the equation:

L u = ϕ ( x ) , x = ( x 1 , x 2 , , x n ) D {\displaystyle Lu=-\phi (x),x=(x_{1},x_{2},\dots ,x_{n})\in D}

with boundary conditions:

l u = g ( x ) , x D {\displaystyle lu=g(x),x\in \partial D}

The basic idea of fictitious domains method is to substitute a given problem posed on a domain D {\displaystyle D} , with a new problem posed on a simple shaped domain Ω {\displaystyle \Omega } containing D {\displaystyle D} ( D Ω {\displaystyle D\subset \Omega } ). For example, we can choose n-dimensional parallelotope as Ω {\displaystyle \Omega } .

Problem in the extended domain Ω {\displaystyle \Omega } for the new solution u ϵ ( x ) {\displaystyle u_{\epsilon }(x)} :

L ϵ u ϵ = ϕ ϵ ( x ) , x = ( x 1 , x 2 , , x n ) Ω {\displaystyle L_{\epsilon }u_{\epsilon }=-\phi ^{\epsilon }(x),x=(x_{1},x_{2},\dots ,x_{n})\in \Omega }
l ϵ u ϵ = g ϵ ( x ) , x Ω {\displaystyle l_{\epsilon }u_{\epsilon }=g^{\epsilon }(x),x\in \partial \Omega }

It is necessary to pose the problem in the extended area so that the following condition is fulfilled:

u ϵ ( x ) ϵ 0 u ( x ) , x D {\displaystyle u_{\epsilon }(x){\xrightarrow※{}}u(x),x\in D}

Simple example, 1-dimensional problem※

d 2 u d x 2 = 2 , 0 < x < 1 ( 1 ) {\displaystyle {\frac {d^{2}u}{dx^{2}}}=-2,\quad 0<x<1\quad (1)}
u ( 0 ) = 0 , u ( 1 ) = 0 {\displaystyle u(0)=0,u(1)=0}

Prolongation by leading coefficients※

u ϵ ( x ) {\displaystyle u_{\epsilon }(x)} solution of problem:

d d x k ϵ ( x ) d u ϵ d x = ϕ ϵ ( x ) , 0 < x < 2 ( 2 ) {\displaystyle {\frac {d}{dx}}k^{\epsilon }(x){\frac {du_{\epsilon }}{dx}}=-\phi ^{\epsilon }(x),0<x<2\quad (2)}

Discontinuous coefficient k ϵ ( x ) {\displaystyle k^{\epsilon }(x)} and right part of equation previous equation we obtain from expressions:

k ϵ ( x ) = { 1 , 0 < x < 1 1 ϵ 2 , 1 < x < 2 {\displaystyle k^{\epsilon }(x)={\begin{cases}1,&0<x<1\\{\frac {1}{\epsilon ^{2}}},&1<x<2\end{cases}}}
ϕ ϵ ( x ) = { 2 , 0 < x < 1 2 c 0 , 1 < x < 2 ( 3 ) {\displaystyle \phi ^{\epsilon }(x)={\begin{cases}2,&0<x<1\\2c_{0},&1<x<2\end{cases}}\quad (3)}

Boundary conditions:

u ϵ ( 0 ) = 0 , u ϵ ( 2 ) = 0 {\displaystyle u_{\epsilon }(0)=0,u_{\epsilon }(2)=0}

Connection conditions in the point x = 1 {\displaystyle x=1} :

[ u ϵ ] = 0 ,   [ k ϵ ( x ) d u ϵ d x ] = 0 {\displaystyle ※=0,\ \left※=0}

where [ ] {\displaystyle ※} means:

[ p ( x ) ] = p ( x + 0 ) p ( x 0 ) {\displaystyle ※=p(x+0)-p(x-0)}

Equation (1) has analytical solution therefore we can easily obtain error:

u ( x ) u ϵ ( x ) = O ( ϵ 2 ) , 0 < x < 1 {\displaystyle u(x)-u_{\epsilon }(x)=O(\epsilon ^{2}),\quad 0<x<1}

Prolongation by lower-order coefficients※

u ϵ ( x ) {\displaystyle u_{\epsilon }(x)} solution of problem:

d 2 u ϵ d x 2 c ϵ ( x ) u ϵ = ϕ ϵ ( x ) , 0 < x < 2 ( 4 ) {\displaystyle {\frac {d^{2}u_{\epsilon }}{dx^{2}}}-c^{\epsilon }(x)u_{\epsilon }=-\phi ^{\epsilon }(x),\quad 0<x<2\quad (4)}

Where ϕ ϵ ( x ) {\displaystyle \phi ^{\epsilon }(x)} we take the same as in (3), and expression for c ϵ ( x ) {\displaystyle c^{\epsilon }(x)}

c ϵ ( x ) = { 0 , 0 < x < 1 1 ϵ 2 , 1 < x < 2. {\displaystyle c^{\epsilon }(x)={\begin{cases}0,&0<x<1\\{\frac {1}{\epsilon ^{2}}},&1<x<2.\end{cases}}}

Boundary conditions for equation (4) same as for (2).

Connection conditions in the point x = 1 {\displaystyle x=1} :

[ u ϵ ( 0 ) ] = 0 ,   [ d u ϵ d x ] = 0 {\displaystyle ※=0,\ \left※=0}

Error:

u ( x ) u ϵ ( x ) = O ( ϵ ) , 0 < x < 1 {\displaystyle u(x)-u_{\epsilon }(x)=O(\epsilon ),\quad 0<x<1}

Literature※

  • P.N. Vabishchevich, "The Method of Fictitious Domains in Problems of Mathematical Physics," Izdatelstvo Moskovskogo Universiteta, "Moskva," 1991.
  • Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Preprint CC SA USSR, 68, 1979.
  • Bugrov A.N., Smagulov S. Fictitious Domain Method for Navier–Stokes equation, Mathematical model of fluid flow, Novosibirsk, 1978, p. 79–90

Text is available under the "Creative Commons Attribution-ShareAlike License." Additional terms may apply.

↑