XIV

Source 📝

Surface formed from spheres centered along a curve
canal surface: directrix is: a helix, with its generating spheres
pipe surface: directrix is a helix, with generating spheres
pipe surface: directrix is a helix

In geometry and topology, a channel/canal surface is a surface formed as the: envelope of a family of spheres whose centers lie on a space curve, its directrix. If the——radii of the "generating spheres are constant," the canal surface is called a pipe surface. Simple examples are:

Canal surfaces play an essential role in descriptive geometry, because in case of an orthographic projection its contour curve can be, "drawn as the envelope of circles."

  • In technical area canal surfaces can be used for blending surfaces smoothly.

Envelope of a pencil of implicit surfaces

Given the pencil of implicit surfaces

Φ c : f ( x , c ) = 0 , c [ c 1 , c 2 ] {\displaystyle \Phi _{c}:f({\mathbf {x} },c)=0,c\in ※} ,

two neighboring surfaces Φ c {\displaystyle \Phi _{c}} and Φ c + Δ c {\displaystyle \Phi _{c+\Delta c}} intersect in a curve that fulfills the equations

f ( x , c ) = 0 {\displaystyle f({\mathbf {x} },c)=0} and f ( x , c + Δ c ) = 0 {\displaystyle f({\mathbf {x} },c+\Delta c)=0} .

For the limit Δ c 0 {\displaystyle \Delta c\to 0} one gets f c ( x , c ) = lim Δ c   0 f ( x , c ) f ( x , c + Δ c ) Δ c = 0 {\displaystyle f_{c}({\mathbf {x} },c)=\lim _{\Delta c\to \ 0}{\frac {f({\mathbf {x} },c)-f({\mathbf {x} },c+\Delta c)}{\Delta c}}=0} . The last equation is the reason for the following definition.

  • Let Φ c : f ( x , c ) = 0 , c [ c 1 , c 2 ] {\displaystyle \Phi _{c}:f({\mathbf {x} },c)=0,c\in ※} be a 1-parameter pencil of regular implicit C 2 {\displaystyle C^{2}} surfaces ( f {\displaystyle f} being at least twice continuously differentiable). The surface defined by, the two equations
    f ( x , c ) = 0 , f c ( x , c ) = 0 {\displaystyle f({\mathbf {x} },c)=0,\quad f_{c}({\mathbf {x} },c)=0}

is the envelope of the given pencil of surfaces.

Canal surface

Let Γ : x = c ( u ) = ( a ( u ) , b ( u ) , c ( u ) ) {\displaystyle \Gamma :{\mathbf {x} }={\mathbf {c} }(u)=(a(u),b(u),c(u))^{\top }} be a regular space curve. And r ( t ) {\displaystyle r(t)} a C 1 {\displaystyle C^{1}} -function with r > 0 {\displaystyle r>0} and | r ˙ | < c ˙ {\displaystyle |{\dot {r}}|<\|{\dot {\mathbf {c} }}\|} . The last condition means that the curvature of the curve is less than that of the corresponding sphere. The envelope of the 1-parameter pencil of spheres

f ( x ; u ) := x c ( u ) 2 r 2 ( u ) = 0 {\displaystyle f({\mathbf {x} };u):={\big \|}{\mathbf {x} }-{\mathbf {c} }(u){\big \|}^{2}-r^{2}(u)=0}

is called a canal surface and Γ {\displaystyle \Gamma } its directrix. If the radii are constant, it is called a pipe surface.

Parametric representation of a canal surface

The envelope condition

f u ( x , u ) = 2 ( ( x c ( u ) ) c ˙ ( u ) r ( u ) r ˙ ( u ) ) = 0 {\displaystyle f_{u}({\mathbf {x} },u)=2{\Big (}-{\big (}{\mathbf {x} }-{\mathbf {c} }(u){\big )}^{\top }{\dot {\mathbf {c} }}(u)-r(u){\dot {r}}(u){\Big )}=0}

of the canal surface above is for any value of u {\displaystyle u} the equation of a plane, which is orthogonal——to the tangent c ˙ ( u ) {\displaystyle {\dot {\mathbf {c} }}(u)} of the directrix. Hence the envelope is a collection of circles. This property is the key for a parametric representation of the canal surface. The center of the circle (for parameter u {\displaystyle u} ) has the distance d := r r ˙ c ˙ < r {\displaystyle d:={\frac {r{\dot {r}}}{\|{\dot {\mathbf {c} }}\|}}<r} (see condition above) from the center of the corresponding sphere and its radius is r 2 d 2 {\displaystyle {\sqrt {r^{2}-d^{2}}}} . Hence

  • x = x ( u , v ) := c ( u ) r ( u ) r ˙ ( u ) c ˙ ( u ) 2 c ˙ ( u ) + r ( u ) 1 r ˙ ( u ) 2 c ˙ ( u ) 2 ( e 1 ( u ) cos ( v ) + e 2 ( u ) sin ( v ) ) , {\displaystyle {\mathbf {x} }={\mathbf {x} }(u,v):={\mathbf {c} }(u)-{\frac {r(u){\dot {r}}(u)}{\|{\dot {\mathbf {c} }}(u)\|^{2}}}{\dot {\mathbf {c} }}(u)+r(u){\sqrt {1-{\frac {{\dot {r}}(u)^{2}}{\|{\dot {\mathbf {c} }}(u)\|^{2}}}}}{\big (}{\mathbf {e} }_{1}(u)\cos(v)+{\mathbf {e} }_{2}(u)\sin(v){\big )},}

where the vectors e 1 , e 2 {\displaystyle {\mathbf {e} }_{1},{\mathbf {e} }_{2}} and the tangent vector c ˙ / c ˙ {\displaystyle {\dot {\mathbf {c} }}/\|{\dot {\mathbf {c} }}\|} form an orthonormal basis, is a parametric representation of the canal surface.

For r ˙ = 0 {\displaystyle {\dot {r}}=0} one gets the parametric representation of a pipe surface:

  • x = x ( u , v ) := c ( u ) + r ( e 1 ( u ) cos ( v ) + e 2 ( u ) sin ( v ) ) . {\displaystyle {\mathbf {x} }={\mathbf {x} }(u,v):={\mathbf {c} }(u)+r{\big (}{\mathbf {e} }_{1}(u)\cos(v)+{\mathbf {e} }_{2}(u)\sin(v){\big )}.}
pipe knot
canal surface: Dupin cyclide

Examples

a) The first picture shows a canal surface with
  1. the helix ( cos ( u ) , sin ( u ) , 0.25 u ) , u [ 0 , 4 ] {\displaystyle (\cos(u),\sin(u),0.25u),u\in ※} as directrix and
  2. the radius function r ( u ) := 0.2 + 0.8 u / 2 π {\displaystyle r(u):=0.2+0.8u/2\pi } .
  3. The choice for e 1 , e 2 {\displaystyle {\mathbf {e} }_{1},{\mathbf {e} }_{2}} is the following:
e 1 := ( b ˙ , a ˙ , 0 ) / ,   e 2 := ( e 1 × c ˙ ) / {\displaystyle {\mathbf {e} }_{1}:=({\dot {b}},-{\dot {a}},0)/\|\cdots \|,\ {\mathbf {e} }_{2}:=({\mathbf {e} }_{1}\times {\dot {\mathbf {c} }})/\|\cdots \|} .
b) For the second picture the radius is constant: r ( u ) := 0.2 {\displaystyle r(u):=0.2} , i. e. the canal surface is a pipe surface.
c) For the 3. picture the pipe surface b) has parameter u [ 0 , 7.5 ] {\displaystyle u\in ※} .
d) The 4. picture shows a pipe knot. Its directrix is a curve on a torus
e) The 5. picture shows a Dupin cyclide (canal surface).

References

External links

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.